Florida Standards for Mathematics Second Grade Standards at a Glance

Mathematical Practice Standards

Mathematical Practice Standards		
MAFS.K12.MP.1.1	Make sense of problems and persev	MAFS.K12.MP. 5.1 Use appropriate tools
MAFS	1 Reason abstractly and quantitatively.	MAFS.K12.MP.6.1 1 Attend to precis
MAFS.K12.MP	1 Construct viable arguments and critique the reasoning of othe	7.1 Loo
MFS.K12.M	Mo	MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.
Operations and Algebraic Thinking: Represent and solve problems involving addifition and subtraction.		
1.1	Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.	
A.1.a	Determine the unknown whole number in an equation relating four orn	
Operations and Algebraic Thinking: Add and subtract within 20.		
Operations and Algebraic Thinking: Work with equal groups of objects to gain foundations for multiplication		
MAF5. 2.0 A.3.3	Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 25 ; write an equation to express an even number as a sum of two equal addends.	
MAFS.2.0A.3.4		
Number and Operations in Base Ten: Understand place value.		
Masf.2...bti.1.	Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a. 100 can be thought of as a bundle of ten tens - called a "hundred." b. The numbers $100,200,300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	
Mafs.2.NBT.1.2		
Mast.2.NBT.1.3		
	Wumber 0 .	
MAFF. 2 . NBT .2. 5		
5.2.NBT.2.6	of fur two-digit numbers sising strategies based on place value and properties of operation	
MaFs. 2 . NBT . 2.7	Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand tha	
.nBt.2.8	Mentally add 10 or 100 to a aiven number 100 -900, and mentally subtrat 10 or 100 from a given number $100-900$.	
MaFs.2.net. 2.9	Measurement and Data: Measure and estimate lengths in standard units.	
5.2.MD.1.1	Measurement and Data: Measure and estimate Iengtus in standarc units.	
MAFS.2.MD.1.2	Describe the inverse relationship between the size of a unit and number of units needed to measure a given object. Example: Suppose the perimeter of a room is lines with one foot rulers. Now suppose wind	
MasF.2.MD.1.3	Estimate eleoths sing units of inches, feet, centimeters, and meters.	
FI.	(e)	
MAF5.2.MD.2.5	Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem	
MAF5.2.MD.2.6	Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2, \ldots$, and represent whole number sums and differences within 100 on a number line diagram.	

Florida Standards for Mathematics

Second Grade Standards at a Glance

Measurement and Data: Work with time and money

MAFS.2.MD.3.7	Tell and write time from analog and digital clocks to the nearest five minutes.
MAFS.2.MD.3.8	Solve one- and two-step word problems involving dollar bills (singles, fives, ten, twenties, and hundreds), or coins (quarters, dimes, nickels, and pennies) using \$ and \ddagger symbols appropriately. Word problems may involve addition, subtraction, and equal groups situations. Example: The cash register shows that the total for your purchase is 594. You gave the cashier 3 quarters. How much change should you receive from the cashier? a. Identify the value of coins and paper currency. b. Compute the value of any combination of coins within one dollar. c. Compute the value of any combinations of dollars (e.g., If you have three ten-dollar bills, one five-dollar bill, and two one-dollar bills, how much money do you have?). d. Relate the value of pennies, nickels, dimes, and quarters to other coins and to the dollar (e.g., There are five nickels in one quarter. There are two nickels in one dime. There are two and a half dimes in one quarter. There are twenty nickels in one dollar).
Measurement and Data: Represent and interpret data.	
MAFS.2.MD.4.9	Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where horizontal scale is marked off in whole-number units.
MAFS.2.MD.4.10	Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put together, take-apart, and compare problems using information presented in a bar graph.
Geometry: Reason with shapes and their attributes.	
MAFS.2.G.1.1	Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.
MAFS.2.G.1.2	Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.
MAFS.2.G.1.3	Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half of, a third of, etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape.

